Book Club – The Coming Plague

I think we’ve all heard a lot about Zika in the past few months.  Hardly a single story about the Olympics is written without the mention of this virus. Major discussion surrounds who’s going or not based on Zika. For the Center for Disease Control’s take, read here. In fact, I was planning on going to the Olympics with my girlfriends until I decided to get pregnant earlier this year.  I do not want to contract Zika and the possible debilitating birth defects associated with it.  But, I’ll also be late in my third trimester and unable to travel. Definitely a bummer, but better than microcephaly.

comingplagueWith all this talk of disease, it reminded me of a fascinating book I read nearly 20 years ago: “The Coming Plague: Newly Emerging Diseases in a World Out of Balance” written by the brilliant Laurie Garrett. This tome tracks over the history, outbreaks and social outcomes of diseases including HIV/AIDS, Ebola, Lassa Fever, and influenza. I was a much younger scientist when I read this book. I hadn’t considered the social and economic effects of disease.  In particular, I remember the stories about how HIV/AIDS in Africa. This virus has devastated families who often had both mother and father die from the disease leaving millions of orphans. But not only that, AIDS eliminated much of the workforce in certain parts of Africa, decimating the economy.

My thoughts on “The Coming Plague”

After reading this book, I insisted that my Mom, who was  substituting teaching at the time, read it too. She called one day to let me know that she told all the teachers in the break room that some deadly disease (likely a version of the Spanish Flu) was going to re-emerge and likely kill millions of people.

I think even just 20 years ago, this fear would be extremely well founded.  Today, I have high hopes that modern science has the funding, political support, and skill to quickly diagnose and develop a treatment for a newly emerging disease.  Zika provides a modern example.  In mere months, scientists have been able to confirm that Zika is linked to birth defects (one original article using animal models here) and less than a month ago, the first clinical trial of a Zika vaccine was approved by the FDA (article here).

Is the Zika response good enough, fast enough, or certain to be effective?  Only time will tell.  Does this science mean that we don’t need to concern ourselves with emerging infectious disease?  Not at all!  In fact, it may mean that we should be even more vigilant so that scientists will have the funding to study, understand, and help treat these diseases as quickly as possible.

What are vaccines and how do they work?

Vaccines are a hot topic. Vaccines bring up lots of discussion, lots of false information, and a vitriolic passion rarely seen in matters of science and pseudoscience. I’m going to start my discussion about vaccines by explaining what they are and what they do. My second post will address some of the false information and controversy (with an added bonus of bringing in my lovely sister’s fabulous point of view as a mom of two!) My final post will answer a question I was asked about whether or not vaccinations are needed after a stem cell transplant.

Let’s talk about what immunizations do and how they do it.  Vaccines (aka immunizations) use biological agents to induce an immune response that protects you from that disease. The immunization itself could contain a weakened version of the disease-causing agent (like an inactivated poliovirus to vaccinate against polio), a non-human version of the disease (such as the cowpox virus to vaccinate against smallpox) or a small part of the disease-causing agent (for example, the toxin or a protein on the surface of the disease-causing agent).  The vaccine is injected into the body, but it isn’t strong enough or functional so it doesn’t cause the disease, but the body attacks the vaccine’s biological agent using immune cells and develops a “memory” of this infection.  This memory is made up of both antibodies and immune cells.  Antibodies are shaped like the letter Y and the top part of the Y functions like a puzzle piece that fits together with a complementary piece on the infectious agent (called an antigen).  When the anitbody encounters a matching puzzle piece it will bind to the infectious agent and kill it quickly before it can cause disease. Therefore, the effectiveness of a vaccines depends on how good the vaccine is at making a puzzle piece fits the antigen puzzle piece on the infectious agent.
antibodySo let’s have an example.  The flu vaccine contains small proteins from several flu strains that, when injected, stimulate the immune system to create antibodies against those flu strains.  When a person encounters the flu,for example because their neighbor has the flu and sneezed on them, the antibodies and immune memory that were created by the vaccination will attack and neutralize the flu virus before it can infect the cells and make you sick.  If the flu vaccine didn’t contain proteins that create puzzle piece antigens that bind to the most common flu strain in a particular year, the flu shot is less effective and more people will get the flu.

Vaccines have done amazing things.  They have eradicated smallpox, a deadly disease that had been around for over 12,000 years and killed 30-35% of people who were infected.  Eradicating this disease saves the lives of over 5 million people each year who would have been infected and died otherwise.  Polio, another crippling disease, has nearly been eradicated with only a few hundred cases in 2012 compared to over 350,000 in 1988. Common childhood diseases like measles and whooping cough have also been decreased considerable, saving millions of lives each year through vaccines.  They are truly a modern medical miracle!