Learning how to Communicate Science

I’ve been writing this blog for a few years in my spare time. Having a full time job (and an eleven month old daughter) doesn’t provide a lot of spare time to write, much less to work on and think deeply about how I communicate on my blog or elsewhere.

This summer, I decided to take the time to think about science communication and acquire some more tools to communication to the public better by taking the American Society for Biochemistry and Molecular Biology (ASBMB) Art of Science Communication course. Using a combination of video lessons and weekly group Skype discussions, this 6 week course crammed in information about why scientists should communicate to the public, how to do it, and probably most importantly, how not to do it.

The Art of Science Communication

In comparison to others in the class, I think I had more experience than many in public communication. But that being said, I took home a few interesting messages:

  1. Scientific studies have shown that telling people facts does not effectively communicate science (what’s known as the deficit model).  Learning this, I immediately regretted many of my blog posts excitedly describing science facts in an attempt to help the public understand it.
  2. Engaging and understanding your audience is key. One way to engage is by “framing” the science in a way that provides context (economic, ethical, emotional, etc). I love framing both in scientific and public talks because that explains why the science is interesting.
  3. I like tangents. This might be obvious (and certainly wasn’t a surprise to me), but I hadn’t realized what a big problem this was until I gave my first presentation (more on that below), and got distracted with all of the other “interesting stuff.” This interesting stuff distracted from the main message and diluted the effectiveness of what I was trying to convey.
  4. You can’t say more than one thing at the same time. Also obvious. But when planning a talk or a blog post or a conversation, knowing what order things should come out in ends up being critical in creating an effective talk.

What about these talks? The course was flanked by recording a pre-course talk and a final, new and improved talk about your research. I love talking in front of an audience, but I haven’t spent a lot of time in front of the camera. I also haven’t given many (if any) talks without PowerPoint slides. But I overcame the fear and the crutch and went for it. If you’re interested, here’s my final talk (the pre-course talk is here).

One Minute Science

Besides being a great learning experience, this course inspired me to start a new YouTube series in collaboration with GotScience called One Minute Science. Launching this fall, I will talk about something cool in biology or health for one minute (or less).  This will force me to focus on what really matters – fascinating science and why it matters. Stay tuned!!!

Final note: if you are a scientist interested in science communication, I encourage you to take this class. It’s only $100 and you learn a ton even if you devote only a few hours a week. Next session applications are open September 4th.

A Grad School Gardener

I wrote this on the plane while thinking about an upcoming GotScience Magazine series that will explore urban gardening. This story doesn’t exactly fit the science-focused mission of my blog or the GotScience series. But this is a story ultimately about my Mom, who inspired this blog and my desire to garden. 

My parents had a huge garden in our sprawling New England backyard where I grew up.  My mom came from a long line of farmers, so gardening was “in her bones,” even if it wasn’t in her children’s. My sister and I complained every time we were asked to go pick the green beans, zucchini, strawberries, tomatoes, lettuce, cucumbers, snap peas, and whatever else had ripened overnight. But firmly rooted in my memory is the taste of a tomato plucked off the vine and popped directly into my mouth or the crunch of the baby carrot cleaned off with the dew on the grass. It may be these memories that, despite our resistance to gardening, led both my sister and I to plant gardens the second that we had the opportunity.

My opportunity was in graduate school.  Living in a small set of six rooms on “The Farm,” I could look out my window and see the rows of corn grown for genetic experiments. This corn grew out of Barbara McClintock’s pioneering work in understanding transposons (also called “jumping genes”) that led to her Nobel Prize in Physiology or Medicine in 1983. But right next to the corn field was a smaller field commandeered by another graduate student whose goal was to grow an award winning giant pumpkin.

The fields that were offered to the students and faculty at Cold Spring Harbor weren’t nearly as well-controlled as those at The Farm. Originally, the set of 10×10 foot plots were tucked away in the middle of a wooded area that was a short walk or drive from campus.  The only rule was that you couldn’t grow corn  – because we couldn’t risk it pollinating the experimental corn and ruining the genetic experiments.

My first grad school garden in the woods

When you give a bunch of scientists land, they tend to till it with the focus and academic rigor that they bring to the hours and hours of laboratory work. These gardens were experimental, but not in the traditional sense. I experimented with growing different vegetables – beets and heirloom tomatoes – than what my mother grew. I also tried different weed suppression techniques, in part to avoid pesticides but more to avoid the tedious (and time consuming) task of weeding. Straw was highly effective, but only if put on the beds before lots of weeds started to grow. The negatives – made a mess in the car.

The next summer, the gardens were moved out of the forest and on to a hill overlooking the volleyball courts. There was a fierce volleyball competition amongst over a dozen scientist-filled teams each summer, so this locale was convenient for garden tending post game. The garden community thrived here. It was so popular that people started to share their small plots along with their advice and vegetables. Within a small research institute on Long Island, it pulled the scientists out of the labs, into the sun, and as a side effect, put tons of fabulous food on our tables each summer.

I look back fondly on those days. Since moving to Phoenix, I haven’t yet mastered the art of urban (and desert) gardening. But I now understand why my mother toiled each spring to prepare a garden to harvest all summer. There’s something about having your hands in the dirt and crunching into that first carrot of the season that you grew yourself that makes all the work worth it.





Why I March: March for Science

The March for Science is this Saturday April 22nd. Thousands (perhaps hundreds of thousands) of scientists and supporters of science will take to the streets in Washington DC and over 517 cities in satellite marches around the globe. I will be marching virtually from my sister’s home in Bend, Oregon.

Why do I march? I march because science is incredible. How cool is it that some people have DNA from two different people in them? How cool is it that scientists are working on curing HIV/AIDS with cord blood transplants? How cool is it that science has increased the length and quality of our lives, in part by eradicating childhood diseases like polio?

My goal as as a scientist is to help scientists do what they do best: research. Research can only be done by funding and supporting science.  Since much of scientific funding comes from the National Institutes of Health and other government agencies, we need to make sure that this support of science continues to be a nonpartisan priority. We need to support our young scientists so that a generation of science isn’t lost.

My goal as a human (who happens to be a scientist) is to empower the public. I want to help the public understand science and health, but I also want everyone to know (or feel like they know) a scientist. It’s a tough road to slog when people don’t trust in science. A first step in fixing this may be making sure that every single American knows a scientist. A recent survey found that people are more likely to trust news from a Facebook friend. Wouldn’t it be great if everyone had a scientist as a Facebook friend?

So I march for science. I march for progress. I march for our present. I march for our future. And I march for all of you, since I am your Facebook science friend.

Science Literacy Starts with Accessibility

A guest post by: Shayna Keyles, Outreach Coordinator, Science Connected

Science is a broad term that covers numerous disciplines, from paleontology and particle physics to medicine and mechanical engineering. Nutritional recommendations, architectural limitations, and football-throwing specifications are all guided by science—as are birth, death, and everything in between. So where does Science Connected fit in with all that?

Science Literacy Starts with AccessibilityScience is vast, and for many around the world, it’s a foreign concept. Many factors contribute to its inaccessibility: teaching methods or curricula that are less than ideal; prohibitive expenses of higher learning; difficulties in understanding scientific concepts or applying them to real life. Reports and findings are frequently written with technical, jargon-filled language that can shut out even the most curious lay reader.

According to the National Science Foundation, only 21 percent of 12th grade students perform at or above grade level in science. While on the surface that sounds like 79 percent of students are just having difficulty solving chemical equations or reciting the Krebs cycle, it really means that over three-quarters of all 12th graders don’t have a firm enough grasp on the earth sciences to understand the causes of climate change or its harmful effects. It means that high schoolers don’t have sufficient understanding of what makes up the food they eat, how exercise helps the body, or how the reproductive system works.

That’s where Science Connected comes in. This nonprofit exists to make science more accessible by creating equal access to science education, responsible science journalism, and readily-available research. When science is accessible and available, science literacy goes up, and with increased science literacy comes a more informed, more engaged, and more responsible citizenry.

Access to science means many things:

  • Easy-to-read, well-researched information
  • Hands-on experiences that don’t require lab access or expensive materials
  • Nearby science programs and activities within an engaged community
  • Educational resources that bring more science into classrooms

Science Connected improves accessibility to science in all these areas. Through the organization’s flagship publication, GotScience Magazine, the team works closely with researchers, journalists, universities, and industry leaders to provide cutting-edge research findings to people of all ages and backgrounds, as well as publishing classroom materials for teachers to use for free.

As a member of the Citizen Science Association, Science Connected also promotes community-organized projects and independent experimentation. Crowdsourced research, individual experiments, and self-published materials are all essential contributions to greater science literacy.

Science Connected is running an IndieGogo campaign to expand its free online magazine, GotScience.org, and to continue making science more accessible to learners of all ages.

Running an open-access magazine requires writers, editors, bandwidth, and public relations, as well as ongoing relationships with science journalists, researchers, and media organizations. While many of the contributing writers and editors volunteer their time, donations are still important to maintain the organization’s infrastructure. Here’s what funds raised through the Indiegogo campaign will be used for:

  • Membership in scientific organizations to make sure sources are all accurate
  • Writing stipends for GotScience journalists and researchers
  • Maintaining the Science Connected and GotScience websites

An assortment of thank-you gifts have been prepared for campaign supporters. For a donation of $5, you’ll get a social media shout-out. For $10 to $150, the range of gifts includes handwritten thank-you notes, exclusive photographic prints, stickers, mugs, and stainless steel water bottles. A $250 donation brings you all of the above and a highly visible, public thank-you on the website.

This is an incredibly important campaign, especially in this uncertain era of science skepticism, threats to public education, reduced funding for the Environmental Protection Agency, and an unfortunate distrust of expertise. With only a month of the campaign left, Science Connected needs to raise $3,000 to meet the goal. Every dollar helps. Your contribution doesn’t only help Science Connected—it helps everyone with a passion for learning about science.

Donate now: https://www.indiegogo.com/projects/science-connected-bring-science-to-your-screen-education/x/16142831#/


Persuading the Unpersuaded

I haven’t blogged for a while. I had a baby. Babies take up a lot of time and energy. Lack of sleep doesn’t make for good blogging.

But I also got discouraged.  This election and the potential impact it will have on science and health is discouraging.  The shouting of “fake news” from all corners of leadership because facts that they don’t like are being talked about is discouraging. (See a great video of Don Lemon walking off of the CNN set from real news being accused of being fake). My deep desire to share with you my passion for science but feeling like I need to address this political atmosphere (and really not wanting to because that’s not my passion and purpose) is discouraging.

But I’m a positive person. And as a positive person, I want to find a solution so that I can move forward and continue to do what I love to do – connecting science with the public.  So part  of my solution will be to stand will all people who support science and truth by participating in the March for Science on April 22nd here in Phoenix.

The other part of the solution will be harder.  I realized that not everyone knows a scientist. And maybe they don’t trust science and scientists because they have misconceptions of who we are and what we do. How can I persuade the unpersuaded and reach beyond the science bubble (as described in a recent Nature article)? I want EVERYONE to know a scientist, and I’ve realized it needs to start with me.

Stay tuned for more about this…but in the meantime, I will be blogging more in order to share with you all the awesomeness of science!!

Adding the “Art” to STEM

Science, Technology, Engineering and Math = STEM, add “ART” and you get STEAM.


Cyndi and I in front of some cells

Friday night, I collaborated with my fabulous friend Cyndi Coon for a “STEAM-Y” Ladies night out at Tempe Center for the Arts. Scientists aren’t known for their artistic abilities, but Cyndi has the knack for drawing out the artist in everyone – even me, who insists I’m not a “draw-er.”  The whole evening revolved around creating your own “cell-fie.”

Bringing on the STEM

As the science nerd that I am, I was excited to talk about the connection between how cells look and how they function. In the examples below, you can see how lung cells have little wavy fingers called cilia that are used to remove debris from the lung.  Plant cells have a hard exterior cell wall, which help make plant’s leaves rigid.  They are also green because of the chloroplasts that harness sunlight and turn it into plant energy.  And in the breast, you can see that the cells are organized in such a way that an empty space (called a lumen) is created where breast milk is stored after pregnancy. There are so many cool examples! Pollen. Neurons. Blood cells. The list goes on and on!

What cells look like and how they’re arranged often help to understand how to cell functions

Adding the “A”

Cyndi brought the “STEAM” by talking about Ernst Haeckel who was a PhD trained zoologist turned artist. His illustrations are stunning! Many of his ideas about evolution and biology were later disproved, and he used creative license with many of his “subjects.” However, his art captured a Victorian audience. He was a true scientific communicator (or as Cyndi would say “performance artist”.

It’s from these dual inspirationsIMG_0360 that the thirty or so attendees got to work with their black paper, gel pens, and colored pencils. We were reminded that patterns often occur in nature as does some level of symmetry, which could be used to help us draw our cells. Patterns can be created by grouping shapes together, mimicking groupings of cells. Or you could draw cells so that you can tell from what they look like what the cell might do.

The group was so creative! You can be creative too! Take inspiration from this idea. Why not have your kids or your friends (with a glass of wine) create cellfies? And if you do, share them with me!



I can’t encourage you enough to check out Cyndi’s creative work at Laboratory 5 or her speaker page. I love that her transformational talk will encourage you to “channel your naughtiness to expose creativity and use it as a super tool.” 

Read a version of this article with even more info about Ernst Haeckel at GotScience.org

Book Club – The Coming Plague

I think we’ve all heard a lot about Zika in the past few months.  Hardly a single story about the Olympics is written without the mention of this virus. Major discussion surrounds who’s going or not based on Zika. For the Center for Disease Control’s take, read here. In fact, I was planning on going to the Olympics with my girlfriends until I decided to get pregnant earlier this year.  I do not want to contract Zika and the possible debilitating birth defects associated with it.  But, I’ll also be late in my third trimester and unable to travel. Definitely a bummer, but better than microcephaly.

comingplagueWith all this talk of disease, it reminded me of a fascinating book I read nearly 20 years ago: “The Coming Plague: Newly Emerging Diseases in a World Out of Balance” written by the brilliant Laurie Garrett. This tome tracks over the history, outbreaks and social outcomes of diseases including HIV/AIDS, Ebola, Lassa Fever, and influenza. I was a much younger scientist when I read this book. I hadn’t considered the social and economic effects of disease.  In particular, I remember the stories about how HIV/AIDS in Africa. This virus has devastated families who often had both mother and father die from the disease leaving millions of orphans. But not only that, AIDS eliminated much of the workforce in certain parts of Africa, decimating the economy.

My thoughts on “The Coming Plague”

After reading this book, I insisted that my Mom, who was  substituting teaching at the time, read it too. She called one day to let me know that she told all the teachers in the break room that some deadly disease (likely a version of the Spanish Flu) was going to re-emerge and likely kill millions of people.

I think even just 20 years ago, this fear would be extremely well founded.  Today, I have high hopes that modern science has the funding, political support, and skill to quickly diagnose and develop a treatment for a newly emerging disease.  Zika provides a modern example.  In mere months, scientists have been able to confirm that Zika is linked to birth defects (one original article using animal models here) and less than a month ago, the first clinical trial of a Zika vaccine was approved by the FDA (article here).

Is the Zika response good enough, fast enough, or certain to be effective?  Only time will tell.  Does this science mean that we don’t need to concern ourselves with emerging infectious disease?  Not at all!  In fact, it may mean that we should be even more vigilant so that scientists will have the funding to study, understand, and help treat these diseases as quickly as possible.

What’s one thing that people don’t know about your job, but should?

On Facebook the other day, a post come up with answers to this question: what’s one thing that people don’t know about your job, but should?  I wish I could share the link, but I just can’t seem to find it. Perhaps this means that my answer to this question should be “Even though I’m a researcher, I can’t find everything I’m looking for by Google searching either.”

Joking aside, I have spent the last several days thinking about this question and what the answer is for me.  I’ve also asked my husband who is a Neuro ICU nurse and everyone else I’ve come into contact recently. For the record, the hubby’s response was that even though you only have two patients that you pay attention to for your 12 hour shift, they take up all your time and you barely have time to sit, eat or do anything else. (He’s such an awesome nurse!!)

Me - my first day as a newly minted PhD scientist!

Me – my first day as a newly minted PhD scientist!

I keep changing my answer the more I think about it. In part, this blog tries to demystify what being a scientist is all about.  I think I tell you about things all the time that you probably didn’t know about, like what a scientific meeting is like, how does the grad school experience work, and what in the world I do at an Institutional Review Board meeting. Also, as a scientist, I think one of the main things I want people to know about the profession as a whole is that scientists aren’t just one type or stereotype. Scientists can be nerds, we can work in the lab, but we are also in business, policy, the arts (and be nerdy or not – it all depends!).  We also have hobbies outside of the lab. I play in a handbell choir and love to bike ride bar hop. Friends of mine have hobbies as diverse as raising carnivorous plants, riding horses, or long-distance biking.  We’re just people too!!

But what if I had to choose JUST ONE thing about MY JOB that I’d want people to know. I think it would be the critical importance of communication. I spend the majority of the day communicating my thoughts and vision to my team, to my leadership, and to other people who will help my team achieve our goals.  I write papers and grants with the goal of communicating to reviewers, other researchers and funders the importance of my work. I communicate with people throughout the hospital asking questions, solving problems and working together to achieve our shared goals.

I know that communication is an important part of many (most?) jobs, but perhaps it is a bit surprising to non-scientist that it is so necessary for a scientist.  Maybe what I really mean is that so much of what I do every day, I can’t do on my own.  I rely on so many other people. Science isn’t a solitary as you might think!!

Then again, in 10 minutes I may think of something that I would want to people to know about my job EVEN MORE. Fortunately, I have this blog, and I can tell you all about it then – and I will.

What about you? What is your job and something that people don’t know about your job but should?  Share in the comments!

The Reproducibility Problem in Research


Image credit Pixabay

When you’re baking a cake, you follow a recipe that uses specific ingredients, added in a particular order, mixed in a specific way, and baked for a certain time at an exact temperature. But what if you made the cake twice?  Or three times? Will it be the same each time? Will your cake be “reproducible”? What if your baking powder is old?  The cake might not rise as much as normal.  Or you buy a different brand of flour? What if you’re baking at your sister’s house in Oregon at a higher elevation than normal?  Do you change the time or temperature that the cake bakes? How much? And what if you’re using your Grandmother’s handwritten recipe for her famous spice cake?  It’s filled with phrases such as a “pinch” of cinnamon or “about” 3 cups of flour.  Do you think it will taste the same as when your Grandmother makes it?  And what if two people try to make the same cake? On the Great British Baking Show, one of the challenges each week has each contestant follow the same recipe with the same ingredients to make the same baked item.  They NEVER come out the same because there is variability built until every step, even with the same instructions, equipment, and ingredients.

Science is sometimes a lot like baking.  Instead of a recipe, scientists’ follow a protocol (or standard operating procedure – shortened to “SOP” because scientists like acronyms). We purchase or make ingredients, typically called “reagents.”  Often a single reagent can be bought from many different companies or made in the lab by you or maybe by a technician, or maybe you were in a rush and you borrowed some from someone down the hall. In biology, biological materials like cells or enzymes are often involved.  These could be new or old.  You could have tested and “validated” your cells or antibodies or you could have relied on someone telling you that they are okay. Once you have all of your reagents pulled together, you do the experiment.

Experiments are funny little things.  You follow your SOP, but maybe one day, the 5 minute incubation turns into 10 because you were in the middle of answering an email.  Maybe another day you’re in a rush to get to a seminar so you skip a step.  Or maybe you’re training a new undergraduate how to do the experiment and you let them do a few steps on their own.

This variability is part of the reason why scientists repeat their experiments multiple times. Three, as you may expect, is often the magic number.  These data are then presented (for example, in a grant or a paper) either as a representative experiment, where only one of the three or more experiments are shown, or as an average of the experiments with “error bars” that often show how much the data differed between experiments.  This type of careful presentation gives other researchers more confidence that the result is real, as opposed to something that happened just because the new grad student messed something up.

The Reproducibility “Problem”

However, even with all this careful planning, there is a lot of chatter these days about the failure of scientists to be able to reproduce experiments.  One of the earliest papers about this topic came from researchers at Amgen who found that they couldn’t reproduce 47 out of 53 studies from cancer research labs. This has led to a snowball of studies and reports of the failure to reproduce data from various fields including biology and psychology. The most recent is a Nature Article surveying 1,500 scientists about their  ability to reproduce their own and others’ results in their own labs. 52% of these scientists felt that there was a reproducibility “crisis” and words like “bleak” and “discomfiting” were thrown around to express the severity of the problem.

So is there really a problem? Lots of papers have discussed this already, but I figured why not add my own opinion to the mix.  In part, yes, these likely is a bit of a problem.  This problem stems from using reagents you aren’t sure of.  For example, imagine that you think you’re studying prostate cancer and you think you’re using a cell line from a prostate cancer patient, but actually you’re using a super common cervical cell line? It happens all the time! An effort to make publishers and grantors enforce cell line authentication and other types of reagent confirmation before beginning experiments is gaining steam.  Not a bad idea and not too expensive.

Image credit Pixabay

Image credit Pixabay

Other efforts are also underway where a third party can be “hired” to authenticate results such as the Reproducibility Project. This is expensive, and time consuming, and one might wonder where the value lies in having someone else repeat your experiments? The value lies in having confidence in the result…but as we’ve discussed here already, the minute you move your experiment to another lab with new reagents and new people, you add more variability. If the experiment fails, how do you know it’s because the result was wrong or because someone else did it wrong?

This is where the issue lies, and I think it all comes back to the central goal of science and scientists. Scientists want to uncover what’s really happening in nature. Every experiment is done to test a hypothesis, and these results lead to more experiments and on and on. Even if an experiment doesn’t get identical results each time or can’t be reproduced in another lab, the fundamental question is whether or not the biological hypothesis is correct or not.  No matter what, scientists should always do multiple different kinds of experiments and follow-up experiments to confirm or refute their hypothesis. This all assumes that scientists are ethical and follow the scientific method – as opposed to folks who publish fabricated or modified data just to get a paper published (but that’s a topic for a whole other post!!)

So I guess the question may not be whether or not an experiment is reproducible, but whether or not the hypothesis is true. And if scientists focus on THAT as opposed to reproducibility, per se, then I think science is moving forward in a productive direction!


What does the “typical” career of a scientist look like

I kind of hate this title. It’s horribly discouraging for young scientists to assume that there is a “typical” career path.  However, over the past 50 years or so, there has been an “expected” path for all “real” scientists to take.  All of the quotation marks are implying that this isn’t the case – it hasn’t really been the case for the past 50 years and it certainly isn’t the case now.  But there was an expectation from the senior scientists and colleagues surrounding you that this is the path to take. (note: this is coming from the point of view of a biology PhD, which I have experience with.  This may be entirely different for other science degrees like math or engineering)

You start with graduate school. Three to six (or seven or eight or nine or ten!!) years of working in a laboratory and writing a thesis.  Hopefully along the way, you’ve written a few grants and peer-reviewed publications.  You’ve networked with colleagues in your field and found great mentors that have helped you along the way.  Before the thesis has even been written and defended, you take all of this hard work, and wrap it up into a curriculum vitae to send to principal investigators (also referred to as a PI) of laboratories that you might be interested in working in as a postdoctoral fellow (also called a post doc). If the PI has space (meaning funding) and is interested in your work, they may invite you to interview. During the interview, you will give an hour long presentation of your PhD work and the rest of the day will be spent with the PI and others in his/her laboratory talking about what they do, how they do it and whether or not you’re a good fit for the lab.  Most PhD graduates go on multiple post doc interviews.  I went on three before I realized that I didn’t want to do a postdoc.

Once you are offered a postdoc, you usually move to a new state and a new institution. There is a stigma that doing a postdoc at the same place that you do you PhD, even if it’s in a different lab, will not provide you with a varied enough research experience.  You are encouraged as a postdoc (and as a scientist, in general) to be okay with moving around. If you’re married, you and your spouse have to figure it out. Have kids?  Same deal.

So what do you do as a postdoc?  You do research in a laboratory, but with more independence than a graduate student.  You are often responsible for writing grants and supervising undergraduate and graduate students.  You are expected to work just as hard – nights, weekends, whatever it takes.  And now, your goal isn’t to graduate, but rather to get enough publications in high profile journals that you can get a faculty position.

How hard can this be?  There have been a lot of articles on this topic, so I won’t rehash here (you can read more in a recent Nature article about the “Future of the Postdoc“) except to say that there are more postdocs than there are faculty positions – BY A LOT. So you really have to stand out. Plus, you have incentive to get a faculty position because postdocs are not paid very well – the NIH salary cap for first year postdocs is $47,000.  Keeping in mind that this is not a 9-5 job, but usually a 60+ hour per week job.

How do you know you’ve completed a postdoc? You don’t.  You either feel like you can start applying for faculty positions or not.  If not, you may want to do a second postdoc.  It’s not uncommon for people to do two 4-6 year postdocs before applying for faculty positions.

Now, I don’t have personal experience applying for faculty positions, but I have many friends who do.  The process of applying is like applying for many other types of jobs except there is an application “season” so that acceptances will come out in advance of a new academic year. Of my friends who have applied for faculty positions, the fewest jobs someone has applied for is about a dozen, but it’s not unheard of to apply for 40 or 50 positions with the hope of getting a handful of interviews.

Because this is so competitive, location is only a passing consideration. You may love Florida, but you’re moving to Minnesota if the best job offer is there. There’s also this fascinating phenomenon in science called the “two body” problem (see more in an interesting Scientific American article). This is when both partners are scientists and looking for jobs in the same place at the same time.  It’s an incredible challenge, and I know many people who have lived in different states from their partner for months to many, many years.

Although a faculty position isn’t the end of a journey – there still tenure, inventing something and start a company, moving to a new institution and all the other ups and downs that come with a job – this is the “typical” goal of many scientists. And it’s a wonderful goal.  It’s a hard road to tread, but without dedicated researchers willing to take the time and sacrifice needed to get to this point, there would be far less scientific innovation and discovery happening in the US.

On a personal note, when I was in graduate school, I distinctly remember a conversation I had with an unofficial academic mentor (thank you Bill Tansey for being so supportive all those years). I was getting close to graduating and he asked me what I wanted to do when I graduated, since he expected that I was applying for postdocs with the goal of becoming a faculty research scientist. I hadn’t once considered taking this typical career path (you can read more about my journey here). But I remember feeling proud that he thought that I could. It actually made me realize that even though I wanted to take a different path, that it wasn’t from lack of intelligence or academic ability. It’s just that we all take our own path, and mine wasn’t going to be “typical.”